Spectral Density of Sparse Sample Covariance Matrices
نویسندگان
چکیده
Applying the replica method of statistical mechanics, we evaluate the eigenvalue density of the large random matrix (sample covariance matrix) of the form J = ATA, where A is an M × N real sparse random matrix. The difference from a dense random matrix is the most significant in the tail region of the spectrum. We compare the results of several approximation schemes, focusing on the behavior in the tail region.
منابع مشابه
On limiting spectral distribution of large sample covariance matrices by VARMA(p,q)
We studied the limiting spectral distribution of large-dimensional sample covariance matrices of a stationary and invertible VARMA(p,q) model. Relationship of the power spectral density and limiting spectral distribution of large population dimensional covariance matrices of ARMA(p,q) is established. The equation about Stieltjes transform of large-dimensional sample covariance matrices is also ...
متن کاملCavity approach to the spectral density of sparse symmetric random matrices.
The spectral density of various ensembles of sparse symmetric random matrices is analyzed using the cavity method. We consider two cases: matrices whose associated graphs are locally treelike, and sparse covariance matrices. We derive a closed set of equations from which the density of eigenvalues can be efficiently calculated. Within this approach, the Wigner semicircle law for Gaussian matric...
متن کاملConsistent Estimation of Large - Dimensional Sparse Covariance Matrices
Estimating covariance matrices is a problem of fundamental importance in multivariate statistics. In practice it is increasingly frequent to work with data matrices X of dimension n×p, where p and n are both large. Results from random matrix theory show very clearly that in this setting, standard estimators like the sample covariance matrix perform in general very poorly. In this “large n, larg...
متن کاملOperator norm consistent estimation of large dimensional sparse covariance matrices
Estimating covariance matrices is a problem of fundamental importance in multivariate statistics. In practice it is increasingly frequent to work with data matrices X of dimension n × p, where p and n are both large. Results from random matrix theory show very clearly that in this setting, standard estimators like the sample covariance matrix perform in general very poorly. In this “large n, la...
متن کاملSpectra of empirical auto-covariance matrices
Abstract – We compute spectral densities of large sample auto-covariance matrices of stationary stochastic processes at fixed ratio α=N/M of matrix dimension N and sample size M . We find a remarkable scaling relation which expresses the spectral density ρα(λ) of sample auto-covariance matrices for processes with correlations as a continuous superposition of copies of the spectral density ρ (0)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006